
JOURNAL OF COMPUTATIONAL PHYSICS 7, 327-345 (1971) 

On Finding the Admittance Matrix of a Thin-Film Network 

by Solving the Reduced Wave Equation in Two Dimensions 

JAMES L. BLUE 

Bell Telephone Laboratories, Incorporated, Murray Hill, New Jersey 

Received September 10, 1970 

An economical method is presented for numerically finding the admittance matrix, 
at any frequency, of a thin-film distributed resistance-capacitance network. The partial 
differential equation for the potential in the thin film, 

is reformulated as an integral equation over the boundary of the film and solved by 
collocation. For a given accuracy, this method of finding the admittance matrix is 
faster by a factor of ten or more than finite-difference methods. The method is applicable 
to other problems described by the reduced wave equation. 

1. INTR~OUCTI~N 

This paper presents an economical method for numerically finding the admittance 
matrix, at any frequency, of a thin-film distributed resistance-capacitane (DRC) 
network. The potential in the thin film obeys the partial differential equation 

with 

y2 = iwR,C (2) 

in a two-dimensional region, and also obeys linear boundary conditions on the 
perimeter of the region. Equation (l), the reduced wave equation, describes many 
important physical phenomena (with different 73. It is customarily solved by 
finite-difference methods, which are very powerful, but which cannot take full 
advantage of the simplicity of (l), especially in the case to be considered in this 
paper, when y2 is constant over the region in question. In this paper, (1) is refor- 
mulated as an integral equation involving the potential and its normal derivative 
on the perimeter of the network. In this manner, the problem is reduced from a 
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two-dimensional problem to a one-dimensional one, with attendant savings in 
computer time. 

The integral equation is much more complicated than the differential equation, 
but an accurate solution for the admittance matrix may be obtained more economi- 
cally from the integral equation. Results for Laplace’s equation and a simple test 
structure indicate that the present technique finds the conductance in less than one- 
tenth the time taken by previously published finite-difference method solutions of 
the same accuracy. 

The exposition in this paper will be in terms of the DRC network; extensions for 
more general problems of type (1) will be considered in Section 5. 

2. FORMULATION 

A cross section of a portion of a thin-film DRC network is shown in Fig. 1. When 
fringing of the electric field in the vertical direction can be ignored, the potential 
in the resistive layer obeys, in two dimensions, 

F~I = y2y = iwR,CF. (3) 

v is the potential difference between the resistive layer and the ground plane; the 
resistive layer is assumed to be sufficiently thin so that the variation of y in the 
direction normal to the ground plane can be ignored. 

r INSULATOR 

/-- 
METAL CONTACTS 

GROUND PLANE 

FIG. 1. Cross section of a portion of a thin-film DRC network. 

A time dependence of exp(iwt) has been assumed; R, is the sheet resistance of the 
resistive layer, and C the capacitance per unit area coupling the resistive layer to the 
ground plane. Figure 2 shows a top view of a sample DRC network; (3) holds in 
the resistive layer, the stippled region. The boundary of the resistive region is made 
up of metal contacts (heavy lines) and of insulating boundaries (light lines). On 
each of the metal contacts, the boundary condition is that the potential be constant; 
the current flowing out through the contact is to be found. On each of the insulating 
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parts of the boundary, the boundary condition is that no current flow out of the 
resistive region. This is equivalent to the condition that 

n.Vp,=O (4) 

on insulating parts of the boundary; n is the unit-length outward-pointing normal 
to the boundary. On insulating parts of the boundary, the potential is to be found. 
No special difficulty arises with resistive regions which are multiply connected, as 
in Fig. 2, which has a hole in the resistive layer. 

FIG. 2. Top view of a hypothetical DRC network. The dark lines are metal terminals. The 
resistive layer is surrounded by an insulator, and has a hole in it. 

In a way similar to that used by Courant and Hilbert [I] for Laplace’s equation, 
(3) may be reformulated as an integral equation, starting with Green’s boundary 
formula, 

jj, (GV2p? - yV2G) dx dy = j, (G $ - v $) ds. 

The area integral is over D, the resistive layer; the line integral is over r, the 
boundary of D. For the example of Fig. 2, D is multiply connected; r consists of 
two parts-an outer rectangle and an inner trapezoid. 

The function G will be chosen later to eliminate the area integral. Equation (5) 
may be rewritten as 

j j, [G(V2q - y”y) - v(V2G - y2G)] dx dy = j, (G 2 - cp $) ds. (6) 

By virtue of (3), the coefficient of G in the area integrand vanishes. To eliminate 
the area integral entirely, let G be the Green’s function of (3) 

W, Y; x’, 14 = K,(v), 

r2 = (x - x’)~ + (y - Y’)~, 
(7) 



330 BLUE 

where (x’, y’) is any arbitrary point, x and y are the variables of integration in (6), 
and K,, is the modified Bessel function of the second kind. Then apply (6) to D’, 
consisting of D minus a small circle of radius E, centered at (x’, y’). If (x’, y’) is on 
r, only the sector of the circle inside D need be excluded. By taking the limit 
E + 0. one obtains 

+‘, y’) c&c’, y’) = j,. [K&W) v - q& y) zK+] ds. (8) 

Here 

0(x’, y’) = 2Tr, for (x’, y’) inside D, 

= 0, for (x’, y’) on r, (9) 

= 0, for (x’, y’) outside D; 

0 is the interior angle at (x’, y’) subtended by I’, equal to r if (x’, y’) is not a corner 
point of the boundary. When (x’, y’) is on the boundary, the integral is to be 
interpreted as a principal-value integral. For Laplace’s equation in two dimensions, 
(3) with y = 0, K&r) must be replaced by --In r. 

From (8) it may be seen that the potential inside the resistive region is deter- 
mined if the potential and normal gradient are known at each point of the bound- 
ary. From the form of (8), it may be verified that the potential inside the resistive 
region obeys (3) identically. At each point of r, either v or +/an is specified, and 
the other is to be found. Taking (x’, y’) on r in Eq. (8) results in an integral equa- 
tion involving only the potential and its normal gradient on the boundary. Thus, 
the two-dimensional partial differential Eq. (3) has been reduced to a one-dimen- 
sional integral equation for F and +/i?n. 

The integral equation may be written as 

4s’) p?(s’) = p j [K, (v-1 #(s) + An * r/r) K(v) &)I & r 

the P indicates a Cauchy principle-value integral. Since 93 and I/I = +$3n are 
needed only on r, the arc length s is used as parameter instead of x and y. The 
vector r is from point s’ to point s. The Bessel function K&r) arises from [2] 

= --y(n * r/r) K,(yr). (11) 

The geometry involved is shown in Fig. 3; r and n are shown for two different s 
points and one s’ point. The integral on the right side of (10) naturally divides into 
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two parts, since #(s) = 0 on insulating parts of r, and c&) = constant on each 
metal contact terminal. 

In order to determine the admittance matrix for an M-terminal network, M 
different solutions are necessary. The k-th solution may conveniently be taken to be 
that with y = 1 on the k-th terminal and v = 0 on the remaining terminals. The 
current through terminal j is then the (j, k) element of the admittance matrix; each 
solution gives one column of the matrix. 

The linear integral equation (10) is of the form 

4s>f(s> + P j b(s, t>f(t> dt = c(s), (12) 

where a, b, and c are known functions, and f is unknown; f is either p or 4; a(s) is 
---o(s) on insulating sides, and zero on metal sides; c(s) comes from the integral 
over 9 on the terminals. When an admittance matrix is desired instead of a single 

FIG. 3. Geometry of Eq. (10). 

solution, (12) is to be solved several times with different right sides but with the 
same left side. A standard method for the approximate solution of (12) forf(s) is, 
in principle, quite simple. It consists of two parts. First, f(s) is approximated by a 
linear combination of N trial functions with undetermined coefficients, say 

f(s) = giv(S) = i W,(s). (13) 
7c=l 

The usual trial function is a polynomial, particularly one of low order. After (13) 
is substituted in (12), the integral equation becomes 

a(s) i W,(s) + f WdS) = c(s), 
k=l k=l 

(14) 
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where 

G%(S) = P j F,(t) b(s, t ) dt. (15) 

The second part of the solution of (12) is the solution of (14). Because of approxi- 
mation (13), (14) cannot, in general, be satisfied for every value of u, no matter 
how the bk’s are chosen. The simplest method is collocation: Choose N values sj at 
which to satisfy (14) exactly. Then (14) becomes a set of N linear algebraic equations 
for the N bk’s, which may be solved by a standard matrix method such as Gaussian 
elimination. When an admittance matrix is being found, there are N linear equa- 
tions to be solved, with M different right sides but the same matrix left side. If N 
is sufficiently large and the sj are chosen “reasonably”, one expects that gN(S) is a 
good approximation to f(s), although a formal proof is at best quite difficult. A 
second method is to choose M values si , M > N, at which to approximately 
satisfy (14). Then (14) becomes an overdetermined system of M linear algebraic 
equations for the Nb,‘s, and may be solved in the least squares sense or in the 
Chebyshev sense by a standard library routine. 

For the remainder of this paper, only resistive regions bounded by straight-line 
segments will be considered. This restriction greatly simplifies the geometrical 
manipulations necessary to deal with otherwise almost arbitrary resistive regions, 
and allows most of the integrations needed to be done symbolically rather than 
numerically. With this restriction, (10) may be written 

The geometry is shown in Fig. 4; the boundary r is made up of straight-line 
segments r, , m = 1, 2 ,..., M. For given s’, n . r = p is constant on r, . If r, is 
an insulating side, #,(s) = 0 and y&) is to be replaced by a trial function. If r, 

FIG. 4. Geometry of Eq. (16). 
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is a metallic side, rp,(.s) is a constant (either 0 or 1) and &,(x) is to be replaced by a 
trial function. On each side a different trial function is used. Polynomial trial 
functions will first be considered; special trial functions will be considered later 
for use near singular boundary points. 

When the trial function for y’m or & is a polynomial in s, the integrals in (16) 
may be done symbolically and then evaluated numerically, rather than being done 
strictly numerically. This is advantageous because computer time is saved. The 
symbolic integration may be illustrated by the integral 

where the limits of integration and the trial function for #, have been inserted. 
From Fig. 4, r2 = s2 + p2. Also, K&r) is a function of y2r2 only, since [2] 

&(z) = -[E + i In(z2/4)] [ 1 + $-$ + w + ...I 

+&( ) 
A 1 + 1 (d412 - + (1 + ; +;, q$ + *a*, 2 (2!)" (18) 

where E is Euler’s constant (E m 0.5772156649...). Thus the coefficient of b, in (17) 
is of the form 

P 1” {ln(s2 + p2> . Q(s) + R(s)) ds, 
81 

(19) 

where Q and R are polynomials in s, and enough terms in the expansion of K&r) 
are used for the desired accuracy. The polynomials in r2 = s2 + p2 are combined 
symbolically with sk, the integrals done symbolically, and the limits substituted. 

The K,v, integral in (16) is done similarly; (I/yr) K,(y) is a function of y2r2 
only [2]. The integrals are of the same type as (19) plus another of the type 

This integral is also done symbolically. 
When / z ( is large, (18) is not a suitable representation for K,(z); too many 

terms are needed for convergence, and too much cancellation takes place, so that 
accuracy is lost on a finite-precision computer. For large / z 1 , the asymptotic 
expansion for K,,(z) is used [2], 

K,(z) - (21) 
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When this asymptotic expansion and a similar one for K,(z) are used, then the 
integrals in (16) must be done numerically. The integrands are quite small, however, 
since Re(yr) > 0, and are smoothly-varying, so that an automatic Romberg 
quadrature routine is suitable [3]. 

For the approximate solution by collocation of (16), a set of points {sj’} must be 
chosen, one point for each trial function. There is no a priori method of choosing 
the collocation points. However, solving an equation like (14) by collocation is 
somewhat similar to the problem of approximating a function on (- 1, 1) by 
interpolating a &h-order polynomial to the function at k + 1 points in (- 1, 1). It 
is well known [4] that, without having any special knowledge about the function, 
the maximum error in the approximation is minimized by choosing the inter- 
polation points to be the zeroes of the Chebyshev polynomial of order k + 1. 
Several rules for the allocation of collocation points were considered, all of them 
such that, if on one side Z’, , either yrn or #m. , whichever is the unknown, is to be 
approximated by a kth-order polynomial, k + 1 collocation points are chosen on 
r, . Best results were obtained, as expected, when the k + 1 collocation points 
were chosen as the zeroes of the Chebyshev polynomial of order k + 1, shifted 
from the interval (- 1, 1) to the interval (sl , sz). Since all the Chebyshev zeroes 
are inside the interval, all the ~(8’) in (16) are equal to 7~. 

SINGULAR BOUNDARY POINTS 

“Singular corners” in the boundary force correspondingly singular behavior in 
the potential near the corners. For this purpose, a corner is defined as singular if 
a metallic side and an insulating side meet at a corner whose interior angle is not 
rr/2, or if two metallic sides or two insulating sides meet at an angle other than n. 
(Exceptions to the definition will be noted later.) A singular corner of the first 
type is shown in Fig. 5, together with palar coordinates (p, 0) centered at the 
corner. Near such a corner, the potential does not have a convergent two-dimen- 
sional Taylor series expansion about the singular corner; a low-order polynomial 
is a poor approximation to the potential or normal gradient. Instead, the potential 
near the corner may be expanded as 

~6, Q = y. + ~fY,@LG sin ~8 + B, cos dl. (22) 
n 

For (3), fV(p) = Z&I), the modified Bessel function of the first kind [2]. For 
Laplace’s equation, f&) = p”. The V’S depend upon the geometry of the corner, 
and are chosen to meet the boundary conditions, and the A’s and B’s depend on 
conditions away from the corner. For the example of Fig. 5, to satisfy the boundary 
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conditions of q~ = constant on 19 = 0 and $ = (l/p) +/at7 = 0 at t3 = 8, , the 
cosine terms must vanish and 

v, = (2n - I) T/2e, , (23) 

FIG. 5. Geometry at singular corner. 

so that 

On the insulating side, 0 = BC , 

qh ec) = qo + ~~~~~~~~~~~ - ~2~3a128,(YP) + --. . (25) 

Since for small 1 z 1 , I”(z) - zy, the first two terms are expected to be most impor- 
tant near the corner, unless A, fortuitously is very much smaller than AS. For 
large j z ( (see Ref. [2]), 

I”(Z) -gz 11 - y + . ..I. (26) 

so that, in general, all the terms are needed and there is large cancellation in (25). 
For improving the approximate potential, only the small p behavior is important, 
so the trial function used near the singular corner is 

q4p, 0,) = q-Al + AIP~‘~% (27) 

581/7/z-10 
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instead of a polynomial. Similarly, on 6 = 0, 

#(p, 0) = - 122$!9 
P I 60’ 

$iP,O) = ---Al 6 L/2&P) - A2 & &m~iYP) - ... . 
c 

The trial function used near the singular corner is 

$ip, 0) = --A, $ p((~/2+l) 9 
c 

(29) 

(30) 

instead of a polynomial. 
Similarly, for two metallic sides or two insulating sides meeting at a corner 

with interior angle 8, , vn = m/O, . In (22), only the sine terms are present for 
the metallic corner, and only the cosine terms for the insulating corners. The trial 
function used at a metallic corner is 

#(p, 0) = $(p, 0,) = A, + p((“‘ec)-l), 
c 

and that used at an insulating corner is 

dp, 0) = To + ~lPnioc, 

Tip, 0,) = 90 - &Pn’sc. 
(32) 

For some angles BC , the v’s turn out to be integers. A frequently occurring 
example is two metallic (or insulating) sides meeting with interior angle of 77/2. For 
such corners, the Taylor series does converge, but has some terms missing; these 
corners need not be treated as singular. 

On the two sides adjacent to a singular corner, for p less than some pc , the above 
trial functions are used; for p larger than pc , polynomial trial functions are used. 
There is no a priori method of choosing pc , although qualitative arguments may 
be made. If pc is chosen too large, these trial functions will be inadequate since v 
does not behave like pv far from the corner. If pe is chosen too small, these trial 
functions will be adequate near the corner, but for p > pc the potential still behaves 
like p” and the polynomial trial functions will be inadequate. One criterion for 
choosing pc is based upon the lengths of the two sides adjacent to the comer. Along 
an adjacent side one expects the potential to vary like p” and then to vary smoothly; 
if the next corner is singular, the potential will have another p” behavior about 
that corner. A pmax may somewhat arbitrarily be defined as one-half the side 
length if the next corner is regular, and one-third the side length if the next comer 
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is singular; if the two sides adjacent to a singular corner result in different values 
for pmax calculated in this way, the smaller value is taken. The numerical calcula- 
tions done assume pO to be olpma, with pmax calculated in this way; numerical 
experiments are necessary to determine useful values of the parameter 0~. 

At a singular corner where at least one of the two adjacent sides is a metal, one 
new trial function is introduced and one new collocation point is used, yO being 
given as part of the boundary conditions. The extra collocation point is placed 
exactly on the singular corner; u(s’) in (16) is then equal to 8, . 

At a singular corner where both adjacent sides are insulating, two new trial 
functions are introduced and two new collocation points are used, qO and Bl both 
being unknown. The two extra collocation points are placed at p = pJ2, 0 = 0 
and 0 = 8, ; o(s’) in (16) is then equal to Z-. 

The integrals in (16) now include some over singular corners; these must be done 
numerically, unless p = II * r is zero, in which case they can be done symbolically. 
The necessary integrals are of the type 

s PO p”W 4, 
0 

with v > - 1, and G(p) a smooth function. A special method was devised for these 
integrals [5]. 

4. COMPARISON OF FINITE-DIFFERENCE METHODS 

AND BOUNDARY INTEGRAL EQUATION METHOD 

Finite-difference techniques have frequently been used to solve partial differential 
equations like (3). They have the great advantage of being easy to program for 
computer solution, but have other, well-known, disadvantages. Finite-difference 
methods start by superposing a two-dimensional grid, usually rectangular, on the 
area in question. The potential is found only at the vertices of the grid. If the 
boundary does not coincide with the grid lines, more complicated programming 
is necessary. The Laplacian operator is approximated by a difference operator at 
each vertex, and (3) is replaced by a number of linear algebraic equations, one 
for each vertex. In virtually all cases of practical interest, there are too many 
equations to be solved directly (for instance by Gaussian elimination) and the 
equations are solved iteratively. Again, the iteration converges well for simple, 
compact areas, using successive overrelaxation or similar methods, but for com- 
plicated boundaries the iteration is not guaranteed and, in general, a reasonably 
efficient scheme is not known and must be determined. At the conclusion of the 
iteration, an approximation to the potential is known at each vertex point. The 
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normal derivative at the metal boundaries, #, is found by numerical differentiation, 
and is integrated to obtain the admittance. If the admittance matrix of a multi- 
terminal structure is desired, this process must be done once for each terminal. 
Since the iteration takes most of the solution time, no savings in time is available. 

The boundary integral equation technique overcomes these disadvantages at the 
cost of more complicated computer programming. No grid is necessary, and 
nonorthogonal boundary lines cause no special difficulty. The integral equation is 
approximated by a set of linear algebraic equations, and there are, in general, few 
enough equations to be solved by Gaussian elimination. Solving the linear equations 
takes only a small part of the total computing time, and no iteration is necessary. 
After the linear equations have been solved, an approximation to the potential and 
to its normal derivative is known, on all boundaries of the figure, in functional 
form rather than at isolated points. No numerical differentiation is necessary-the 
admittance is obtained by a straightforward integration of the normal derivative. 
If the admittance matrix of a multiterminal structure is desired, the problem is 
reduced to setting up and solving a set of linear algebraic equations with a number 
of different right sides, and takes very little more computing time than if only one 
column of the admittance matrix is desired. 

It is not necessary to find the potential inside the figure in order to obtain the 
admittance, but the potential may be obtained by doing an integral, (16) with 
u = 277 and s’ inside the resistive region, which is virtually identical to the integrals 
done in setting up the set of linear algebraic equations. The potential in the interior 
automatically satisfies the differential equation, by construction. Finally, the 
boundary integral equation technique is significantly faster than even sophisticated 
finite difference methods. 

Integral equation formulations of the Helmholtz equation for acoustic radiation 
from a three-dimensional surface have been used for some time [6]. Apparently, 
Jaswon and Symm [7, 81 were the first to use similar integral equation formulations 
for Laplace’s equation in electrostatics. Arnold [9] also used Green’s boundary- 
value formula for solving Laplace’s equation. Chawla and Gummel [lo] used an 
integral equation formulation based on the Cauchy integral formula to solve 
Laplace’s equation. 

5. EXTENSIONS 

Equation (1) may be solved by the method described earlier, with any linear 
boundary condition of the form 

f’(s) d$ + G(s) VW = H(s), (34) 

where F, G, and H are given functions on the boundary of the region inside which 
(1) is to be solved. 
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The inhomogeneous form of (l), 

02p, - Y2F = m, Y), (35) 

where f is a given function, may be solved by the method described earlier. One 
way is to find a function F(x, y) which obeys (35) but not the boundary conditions, 
and then use the method described in this paper on the difference q~ - F with new 
boundary conditions. Whenf(x, y) is a polynomial in x and y, F is easily found; 
then the integrals of (16) may be done symbolically as before, since F is a poly- 
nomial in s on each side I’, . If such a function F cannot be found, a different 
integral equation may be obtained by substituting (35) into (6); then an area 
integral, 

- ss &(rr>f(x, Y> dx 4, 
D 

(36) 

must be added to the right side of (10). 
If y2 is a function of x and y instead of a constant, the method is not applicable 

unless a Green’s function can be found; in this case G will not be a function of r 
only, but of x, y, x’, y’. If, however, y2 takes on different constant values over 
subregions, (10) may be applied in each subregion, with both v and $ regarded as 
unknowns. Additional boundary conditions will be necessary on the boundaries 
of the subregion; these will depend on the physical problem being modeled. Such 
a case has been treated by Blue [13]. 

6. NUMERICAL RESULTS 

Computer programs were written to solve for the admittance matrix of a thin- 
film DRC network bounded by straight-line segments. The thin film may be 
multiply connected, and need not be restricted to any particular number of metal 
terminals or insulating sides. Any value of w&C may be specified. Similar pro- 
grams were written to solve Laplace’s equation for the dc conductance matrix of a 
distributed thin-film resistive network. Because complex arithmetic need not be 
used, and because the Green’s function ln(l/r) is simpler to work with than K,,(y), 
this version runs considerably faster than the complex version. 

The programs were designed to give accuracies in the range of 10 x-O.01 % for 
admittance matrix elements. In this range, the collocation method is suitable; if 
considerably more accuracy is desired, a least square or Chebyshev solution of an 
overdetermined set of equations would be necessary. The computer time used is 
approximately proportional to the product of N, the number of trial functions, and 
M, the number of points at which (14) is evaluated (M = N for the collocation 
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method). The time used to solve the linear equations is insignificant compared to 
the time needed to set up the equations for N and A4 of the order of 50 or less. 

The computer programs were designed to be used as part of a large package 
which analyzes integrated circuits, and so must work automatically, with no hand- 
tailoring for particular networks. The programs allocate the collocation points and 
decide, based on comparison of successive analyses, if the requested accuracy has 
been attained, or if it cannot be attained within the allowed bounds on computer 
time and memory. Studies were made of the convergence of the admittance matrix 
as a function of the number of trial functions and of the algorithm for placing the 
collocation points. These studies were made almost exclusively on Laplace’s 
equation, since conformal transformations and symmetry considerations allow 
conductance matrices to be calculated for an unlimited number of two-terminal 
networks. Some of the networks analyzed are shown in Fig. 6, together with their 
conductances g; the conductance matrices are of the form 

c 
g -g 

1 -g g’ 

The first set of tests was designed to check the placing of collocation points. 
Three algorithms were considered for placing k points on a side: the zeroes of the 
Chebyshev polynomial Tk, shifted from (- 1, 1) to (sl , s.J; the zeroes of the 
Legendre polynomial PI, , similarly shifted; and points equally spaced on the side, 
at s1 + h/2, s1 + 3h/2,..., s2 - h/2, where h = (sz - s,)/k. On each side, the 
unknown y or 4 was approximated by a polynomial trial function; the same order 
polynomial was used on each side. 

Each calculation yields an approximate conductance matrix of the form 

i 
g1 -g2 . 

-g2 1 g1 ' 

(b) 

(Cl (d) 

FIG. 6. Test networks. Conductances g are: (a) 1.2792616, (b) 2.0, (c) 0.5, (d) 1.0. 
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FIG. 7. Accuracy vs time plot for Fig. 6a, for three collocation methods, for polynomial 
trial functions of orders one through five. 

FIG. 8. Accuracy vs time plot for Fig. 6a-6d, Chebyshev collocation, polynomials of orders 
one through five. 
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in general, g, and g, are not equal. Figure 7 contains a plot of the larger of the 
conductance errors 1 gtrue - g, 1 and 1 gt rue - g, 1 vs. the computer time used 
(GE 635) for three collocation algorithms and the structure of Fig. 6a. The numbers 
are the orders of the polynomial trial functions used. As expected using the 
Chebyshev zeroes gives a better result than the other two methods. This was also 
found to be true for the other networks of Fig. 6. Their accuracy vs. time plots are 
very similar to Fig. 7, with “Chebyshev” below “Legendre” by a factor of two or 
three, and below “equal” by a factor of ten. For comparison, Fig. 8 has accuracy 
vs. time plots of the four networks, using Chebyshev zeroes as collocation points. 

If an improved admittance matrix is desired and polynomial trial functions are 
being used, one could use higher order polynomials on each side, or subdivide the 
sides and use the same order of polynomials. For Laplace’s equation, and for (3) 
with oR,C not too high, the former procedure proved to be better, up to a point. 

10 

0.01 

0.001 /-uuul 
0.1 1 10 

TIME (SECONDS) 

FIG. 9. Accuracy vs. time plot for Fig. 6a, oi = 1 and a = 0.2, Chebyshev collocation, poly- 
nomials of indicated orders. 
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If the order is too high, the matrix of the linear equations becomes ill-conditioned, 
and accuracy is lost. For the GE 635, with approximately g-digit words, this point 
was reached for sixth or eighth order polynomials. If wR,C is very high, the poten- 
tial on some sides is a rapidly-decaying complex exponential function, which 
cannot be well approximated by a low-order polynomial unless the side is sub- 
divided. (For the proposed application, this circumstance is not expected to occur 
frequently.) 

Some tests were also made using nonpolynomial trial functions at singular 
corners. For the network of Fig. 6a, accuracy vs. time plots are shown in Fig. 9, 
for a: = pc/pmax of 1 and 0.2; Chebyshev zero collocation points were used on the 
sides away from the singular corners. For 01 = I, the conductance is limited in 
accuracy to about 1 y0 because pc is too large. For 01 = l/5, the conductance is 
limited in accuracy to about 0.01% because the integrals (33) are done to an 
accuracy of lO-6. For 01 = I, the error is much worse, and for 01 = l/5 much 
better, than the error if only polynomial trial functions are used. Similar results are 
obtained with the other collocation methods; Chebyshev is only slightly better 
than Legendre, which is slightly better than equal. In general, 01 in the range of 
l/5-1/10 was best; 01 too large is much worse than (y. too small. An all-purpose 
algorithm is difficult to prescribe; perhaps the best is to choose 01 small, l/5 or 

0.001 I ! ,1111111 1 IIIIllll 1 I I I I I I I 

0.1 1 10 100 

TIME (SECONDS) 

FIG. 10. Accuracy vs. time plot for Fig. 6a, various authors. After Chawla and Gummel [lo]. 
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l/10 or less, and to use polynomials of order four or less. Additional trial functions 
in the series (22) could also be used; this was not tested numerically. For 
comparison, Fig. 10 has results from Figs. 7 and 9, together with results from 
other calculations on the same network. The errors plotted for the other authors 
are presumably those for the mean conductance (gl + g&2; they are taken from 
Chawla and Gummel [IO]. Schneider [l I] and Whiting [12] did not solve for the 
conductance of a network, but solved the isomorphic problem of finding the 
capacitance of a coaxial transmission line. Corrections were made by Chawla and 
Gummel to allow for the different computer, the IBM 7094, used by Schneider and 
by Whiting. 

Note Added 

The author wishes to thank the referee for calling his attention to the work of 
E. G. Cristal [14], who compared finite-difference methods with the integral 
equation method for coupled round rods between ground planes. 
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